skip to main content


Search for: All records

Editors contains: "Larochelle, Hugo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Larochelle, Hugo ; Hadsell, Raia ; Cho, Kyunghyun (Ed.)
    In deep learning, leveraging transfer learning has recently been shown to be an effective strategy for training large high performance models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on using first-order differentially private training algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is often low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that least-squares linear regression is much more effective than logistic regression from both privacy and computational standpoint, especially at stricter epsilon values (ε < 1). On the optimization side, we also explore using Newton’s method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is more effective at lower epsilon values while Newton’s method is more effective at larger epsilon values. To combine the benefits of both methods, we propose a novel optimization algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all ε values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of ε typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88% under DP guarantee of (8, 8 ∗ 10−7) and 84.3% under (0.1, 8 ∗ 10−7). 
    more » « less
  2. Larochelle, Hugo ; Kamath, Gautam ; Hadsell, Raia ; Cho, Kyunghyun (Ed.)
    Neural scene representations, both continuous and discrete, have recently emerged as a powerful new paradigm for 3D scene understanding. Recent efforts have tackled unsupervised discovery of object-centric neural scene representations. However, the high cost of ray-marching, exacerbated by the fact that each object representation has to be ray-marched separately, leads to insufficiently sampled radiance fields and thus, noisy renderings, poor framerates, and high memory and time complexity during training and rendering. Here, we propose to represent objects in an object-centric, compositional scene representation as light fields. We propose a novel light field compositor module that enables reconstructing the global light field from a set of object-centric light fields. Dubbed Compositional Object Light Fields (COLF), our method enables unsupervised learning of object-centric neural scene representations, state-of-the-art reconstruction and novel view synthesis performance on standard datasets, and rendering and training speeds at orders of magnitude faster than existing 3D approaches. 
    more » « less
    Free, publicly-accessible full text available June 20, 2024
  3. Larochelle, Hugo ; Ranzato, Marc'Aurelio ; Hadsell, Raia ; Balcan, Maria ; Lin, Hsuan (Ed.)
    We present a novel multi-source uncertainty prediction approach that enables deep learning (DL) models to be actively trained with much less labeled data. By leveraging the second-order uncertainty representation provided by subjective logic (SL), we conduct evidence-based theoretical analysis and formally decompose the predicted entropy over multiple classes into two distinct sources of uncertainty: vacuity and dissonance, caused by lack of evidence and conflict of strong evidence, respectively. The evidence based entropy decomposition provides deeper insights on the nature of uncertainty, which can help effectively explore a large and high-dimensional unlabeled data space. We develop a novel loss function that augments DL based evidence prediction with uncertainty anchor sample identification. The accurately estimated multiple sources of uncertainty are systematically integrated and dynamically balanced using a data sampling function for label-efficient active deep learning (ADL). Experiments conducted over both synthetic and real data and comparison with competitive AL methods demonstrate the effectiveness of the proposed ADL model. 
    more » « less
  4. Larochelle, Hugo ; Ranzato, Marc'Aurelio ; Hadsell, Raia ; Balcan, Maria-Florina ; Lin, Hsuan-Tien (Ed.)
    To better conform to data geometry, recent deep generative modelling techniques adapt Euclidean constructions to non-Euclidean spaces. In this paper, we study normalizing flows on manifolds. Previous work has developed flow models for specific cases; however, these advancements hand craft layers on a manifold-by-manifold basis, restricting generality and inducing cumbersome design constraints. We overcome these issues by introducing Neural Manifold Ordinary Differential Equations, a manifold generalization of Neural ODEs, which enables the construction of Manifold Continuous Normalizing Flows (MCNFs). MCNFs require only local geometry (therefore generalizing to arbitrary manifolds) and compute probabilities with continuous change of variables (allowing for a simple and expressive flow construction). We find that leveraging continuous manifold dynamics produces a marked improvement for both density estimation and downstream tasks. 
    more » « less
  5. Larochelle, Hugo ; Ranzato, Marc'Aurelio ; Hadsell, Raia ; Balcan, Maria-Florina ; Lin, Hsuan-Tien (Ed.)